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SUMMARY

Statistical regularities in the environment create prior
beliefs that we rely on to optimize our behavior when
sensory information is uncertain. Bayesian theory
formalizes how prior beliefs can be leveraged and
has had a major impact on models of perception,
sensorimotor function, and cognition. However, it is
not known how recurrent interactions among neu-
rons mediate Bayesian integration. By using a time-
interval reproduction task in monkeys, we found
that prior statistics warp neural representations in
the frontal cortex, allowing the mapping of sensory
inputs tomotor outputs to incorporate prior statistics
in accordance with Bayesian inference. Analysis of
recurrent neural network models performing the
task revealed that this warping was enabled by a
low-dimensional curved manifold and allowed us to
further probe the potential causal underpinnings of
this computational strategy. These results uncover
a simple and general principle whereby prior beliefs
exert their influence on behavior by sculpting cortical
latent dynamics.

INTRODUCTION

Past experiences impress upon neural circuits information

about statistical regularities in the environment, which help us in

types of behavior, from reaching for one’s back pocket to making

inferences about others’ mental states. There is, however, a

fundamental gap in our understanding of how behavior exploits

statistical regularities in relation to how the nervous system repre-

sents past experiences. The effect of statistical regularities on

behavior is often described in terms of Bayesian theory, which of-

fers a principled framework for understanding the combined ef-

fect of prior beliefs and sensory evidence in perception (Knill

and Richards, 1996), cognition (Griffiths et al., 2008), and sensori-

motor function (Körding and Wolpert, 2004). On the other hand,

the effects of experience on neural activity have been described
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in terms of cellular mechanisms that govern the response proper-

ties of neurons. For example, natural statistics are thought to

shape response properties of early sensory neurons through ad-

justments of synaptic connections (Girshick et al., 2011; Simon-

celli and Olshausen 2001; Berkes et al., 2011; Fiser et al., 2010).

Single-unit responses in many brain areas are thought to encode

recent sensory events (Akrami et al., 2018),motor responses (Dar-

lington et al., 2018;Gold et al., 2008; Janssen andShadlen, 2005),

reward expectations (Platt and Glimcher, 1999; Seo et al., 2014;

Sugrue et al., 2004), and temporal contingencies (Narain et al.,

2018). However, an understanding of how experience-dependent

neural representations enable Bayesian computations is lacking.

Recent studies have focused on an analysis of the structure of

in vivo cortical activity in trained animals and in silico activity in

trained recurrent neural networks (RNNs) to gain a deeper under-

standing of how neural populations perform computations

(Churchland et al., 2012; Chaisangmongkon et al., 2017; Mante

et al., 2013; Remington et al., 2018a; Wang et al., 2018; Yang

et al., 2019). Following this emerging multidisciplinary approach,

we analyzed the structure of neural activity in the frontal cortex of

monkeys and in silico activity in RNNs in a Bayesian timing task.

Results provided evidence that prior statistics establish curved

manifolds of neural activity that warp the underlying representa-

tions of time and cause biases in behavioral responses in accor-

dance with Bayes-optimal integration.

RESULTS

Task and Behavior
Two rhesus macaques performed a time-interval reproduction

task, which we refer to as the Ready-Set-Go (RSG) task (Fig-

ure 1A). The task consists of an estimation epoch followed by

a production epoch. In the estimation epoch, animals had to es-

timate a sample interval, ts, demarcated by two visual flashes

(Ready followed by Set). In the production epoch, animals had

to produce a matching interval by either initiating a saccade or

by moving the joystick to the left or right (Go), depending on

the location of a peripheral target. Monkeys received a reward

if the produced interval, tp, between Set and Go was sufficiently

close to ts (Figure 1B).

We manipulated the animals’ prior expectations by sampling

ts from one of two uniform prior distributions, a ‘‘Short’’ prior
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Figure 1. Task and Behavior

(A) Schematic of a single trial of the Ready-

Set-Go task. The animal has to estimate a

sample interval, ts, between Ready and Set

(estimation epoch), and produce a matching

interval, tp, after Set with a delayed response

(Go) via a saccade or a movement of the joystick

(production epoch).

(B) Reward as a function of relative error (tp - ts) / ts.

(C) Short and Long prior distributions of ts.

(D) Eight randomly interleaved trial types (see

STAR Methods): 2 prior conditions (Short and

Long) 3 2 effectors (Eye and Hand) 3 2 target

directions (Left and Right). Mean and SD of block

length is shown.

(E) Behavior. Top: a representative session for

monkey H showing tp pooled across effectors

and target directions (small dots, individual tri-

als; large open circles, average tp per ts; solid

lines, Bayesian model; diagonal, unity line). The

horizontal location of dots was jittered to facili-

tate visualization. Right: histograms of tp for the

overlapping ts (horizontal dashed line) for the

two prior conditions (orange, Short; blue, Long;

triangles, averages). Top-left inset: average

error (i.e., bias) for each ts (circles, data; solid

lines, Bayesian model). Bottom-right inset: his-

togram of regression slopes relating tp to ts
across sessions (red, Short; blue, Long; tri-

angles, averages). Bottom: the same as top for

monkey G.
ranging between 480 and 800ms, and a ‘‘Long’’ prior ranging be-

tween 800 and 1,200 ms (Figure 1C). The task enabled us to also

manipulate sensory uncertainty since measurements of time in-

tervals become more variable for longer intervals, a property

known as ‘‘scalar variability’’ (Malapani and Fairhurst, 2002).

Since the two prior distributions overlapped at ts = 800 ms, the

task further offered the opportunity to characterize how neural

representations are independently modulated by prior beliefs.

The prior condition and the desired effector were switched

across short blocks of trials (block length: 4.0 ± 4.4 trials; uniform

hazard) and the trial type was explicitly cued throughout each

trial (Figure 1D). The rationale for including two response modal-

ities and two directions of response was to ensure that the neural

correlates of Bayesian integration identified would generalize

across multiple experimental conditions.

To verify that animals learned to perform the task, we used a

regression analysis to assess the dependence of tp on ts. The

regression slopes were positive, indicating that animals were

able to estimate ts and were less than unity, indicating that re-

sponses were biased toward the mean of the prior (Figures 1E

and S1; Table S1). The effect of the prior was most conspicuous

at the overlapping ts for which biases were in opposite directions

for the two prior conditions (rank-sum test, p < 10�43 in animal H,

p < 10�75 in G; Figure 1E; Table S2). This effect was present

immediately after block transitions (Figure S2), indicating that

animals rapidly switched between priors. These results indicate

that animals learned the task contingencies and relied on their

prior expectation of ts.
Next, we used a Bayesian observer model to analyze the

behavior (Figure 2A). Assuming that measurement noise scales

with the interval (Malapani and Fairhurst, 2002) and that the

observer relies on the experimentally imposed uniform prior,

the behavior of the model is captured by a sigmoidal function

that maps noisy measurements, tm, to optimal estimates, te
(Jazayeri and Shadlen, 2010). This model makes three predic-

tions. First, it predicts the tradeoff between response bias and

variance. Accordingly, fits of the model to behavior captured

the bias and variance (Figures 2C and 2D) for both animals and

across all experimental conditions (Figure S1; Table S3).

Second, the model predicts larger biases for intervals near the

two ends of the distribution (Figure 2E). Consistent with this pre-

diction, tp increments at the extrema of the prior were smaller

than increments near the mean (signed-rank test, p < 10�11 in

animal H, p < 10�12 in G; Figure 2F; see Figure S1 for another

test of sigmoidal behavior). Third, due to scalar variability, biases

for the Long prior should be larger than the Short prior condition

(Figure 2G), which we confirmed empirically (Figure 2H;

Table S1). Together, these results provide strong evidence that

animals used a Bayesian strategy to perform the RSG task.

Single-Neuron Response Profiles
We recorded neural activity in the dorsomedial frontal cortex

(DMFC) including the supplementary eye field (SEF), the dorsal

region of the supplementary motor area (SMA), and pre-SMA.

Our choice of recording areas was motivated by previous work

showing a central role for DMFC in motor timing, movement
Neuron 103, 934–947, September 4, 2019 935
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Figure 2. Bayesian Model and Behavior

(A) Bayesian observer model. The measurement (tm) is the sample interval (ts) plus white noise with SD proportional to ts. The Bayesian estimator is a sigmoidal

function that maps tm to an optimal estimate (te) (red, Short; blue, Long). te is biased toward the mean of the prior (arrows). The production interval (tp) is te plus

scalar noise during production epoch.

(B) The prior (top), the likelihood function (middle), the resulting posterior (bottom), and the posterior mean (circles) that represent the estimate.

(C) Comparison of tp bias relative to ts between model and behavior across animals and conditions.

(D) Same as (C) for variability. Individual trials were pooled across sessions for each condition to compute the variance.

(E) The sigmoidal Bayesian estimator predicts that the average tp difference across neighboring ts (Dtp) should be larger around the mean of the prior distribution

(Dtp(middle)), compared to its extrema, Dtp (extreme) (average of Dtp(max) and Dtp(min)).

(F) Dtp (extreme) as a function Dtp (middle) for each session and condition (prior, response modality, direction) pooled across the two monkeys. Each data point

represents a session (red, Short; blue, Long). Top-right: histogram of the difference between Dtp(middle) and Dtp(extreme). The difference was similar between

Short and Long (red and blue triangles) as predicted by the model. Triangles shows averages across datasets. See also Figure S1.

(G) Model prediction for bias for the two prior conditions.

(H) Slopes of regression lines relating tp to ts for individual sessions (small markers connected by gray lines) and the corresponding averages (big markers

connected by a black line). Triangles represent monkey H, and circles, monkey G.
planning, and learning in humans (Coull et al., 2004; Cui et al.,

2009; Halsband et al., 1993), monkeys (Chen and Wise, 1996;

Histed and Miller, 2006; Lara et al., 2018; Lu et al., 2002; Mer-

chant et al., 2013; Mita et al., 2009; Ohmae et al., 2008; Schall

et al., 2002), and rodents (Emmons et al., 2017; Kim et al.,

2013; Matell et al., 2003; Murakami et al., 2014).

During the estimation epoch, many neurons had heteroge-

neous response profiles that were modulated by elapsed time

in a prior-dependent fashion (Figure 3A). Consequently, re-
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sponses at the time of Set varied with both the prior and ts (Fig-

ure 3B). The presentation of Set triggered a transient modulation

of firing rates (Figure 3Bi-iii,v). Following this transient, neurons

exhibited a range of monotonic (e.g., ramping) or non-monotonic

response profiles that were often organized according to ts irre-

spective of the prior condition (Figure 3Bi-iii,vi). Responses of

many neurons during the Set-Go epoch were temporally scaled

with respect to ts (i.e., stretched in time for longer ts), an effect

that was most conspicuous as a change of slope among the
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Figure 3. DMFC Response Profiles and Neural Trajectories

(A) Firing rate of 6 example neurons (i-vi) during the estimation epoch for Short (shades of red) and Long (shades of blue) prior conditions aligned to the time of

Ready (vertical dashed line), and Set (open circles). Top left: the support of the prior. Labels (e.g., H7_3011e) indicate the animal (H versus G) and the effector (e for

Eye and h for Hand).

(B) Same as (A) during the production epoch. Due to animals’ behavioral variability, production epochs for the same tswere of different durations. The plot shows

the average activity of neurons from the time of Set (vertical dashed line) to the minimum tp for each ts.

(C) Firing rate of 3 of the neurons in (A) throughout the trial for the overlap ts of 800 ms (Short: orange, Long: blue). The shaded area shows the difference in firing

rates between the two prior conditions (DFR).

(D) Root-mean-squared (RMS) of DFR during the trial (bin size: 160 ms; thin gray line: data from 2 animals 3 2 effectors 3 2 directions; thick black line, mean

across 8 datasets; shaded area, SEM).

(E) Pie chart of the percentage of neurons with activity dependent on the prior (‘‘prior-dep.’’) and/or ts (‘‘ts-dep.’’), determined by a generalized linear model

(green, only prior-dependent, dark red, only ts-dependent, light red: both prior- and ts-dependent, white: the remaining neurons).

(F) Neural trajectories during the estimation epoch for a representative dataset (monkey H, Eye Left condition) in the subspace spanned by the first three principal

components (PCs) with the same color scheme as (A) (triangles, Ready; circles, Set; arrows, temporal evolution of trajectories).

(G) Same as (F) for the production epoch (circles, Set; squares, Go). Trajectories were truncated at the minimum tp for each ts (dashed line, neural states 200 ms

after Set; small dots, neural states at 20-ms increments). The distance between consecutive dots reflects speed.

See Figure S3 for other datasets.
subset of ramping neurons (Figure 3Bii,vi). This temporal scaling

is consistent with recent recordings in this area in a range of

simple motor timing tasks (Emmons et al., 2017; Merchant

et al., 2011; Mita et al., 2009; Remington et al., 2018a; Wang

et al., 2018).

The influence of prior was most evident at the overlap ts of

800 ms (Figure 3C). Despite identical task demands and tempo-

ral contingencies, many neurons had highly distinct firing rate

patterns depending on the prior condition, with a maximum dif-
ference in firing rate during the support of the prior between 480

and 800 ms (Figure 3D). Remarkably, this effect was present

immediately after block transitions (Figure S2). We used a gener-

alized linear model (GLM) to quantify the influence of ts and prior

condition on spike counts (Figure 3E; see STAR Methods).

Results indicated that approximately 30% of neurons were

modulated by elapsed time (27% monkey H, 31% monkey G),

and more than 60% were sensitive to the prior condition (65%

monkey H, 62% monkey G). These results suggest that neural
Neuron 103, 934–947, September 4, 2019 937



responses during the support of the prior were shaped by a com-

bination of the animal’s prior belief and the measured interval,

which are the two key ingredients for computing the Bayesian

estimate of ts.

Geometry and Dynamics of Population Activity
The relationship between neurons with complex activity profiles

and the computations they perform may be understood through

population-level analyses that depict their collective dynamics

as neural trajectories (Buonomano and Maass, 2009; Church-

land et al., 2012; Fetz, 1992; Rabinovich et al., 2008; Remington

et al., 2018b; Shenoy et al., 2013). Recent work has used this

approach to elucidate neural computations in a wide range

of motor and cognitive tasks (Carnevale et al., 2015; Hennequin

et al., 2014; Mante et al., 2013; Michaels et al., 2016; Rajan et al.,

2016; Remington et al., 2018a; Rigotti et al., 2010; Wang et al.,

2018). Following this line of work, we sought to understand the

computational principles of Bayesian integration in the RSG

task by analyzing the population activity in DMFC.

We applied principal component analysis (PCA) to study the

evolution of neural trajectories for various experimental condi-

tions. Our initial analysis indicated that neural responses associ-

ated with different effectors, target directions, and task epochs

resided in different regions of the state space (Figure S4). There-

fore, we applied PCA separately to neural responses across

experimental conditions and task epochs. For all datasets, the

population activity in each epoch was relatively low dimensional:

3–4 principal components (PCs) in the estimation epoch and

5–10 PCs in the production epoch explained nearly 75% of total

variance (Figure S3).

In the estimation epoch, neural trajectories associated with the

two prior conditions were at different initial states at the time of

Ready and became progressively more distinct throughout their

evolution (Figures 3F and S3; Video S1). A notable feature of

population activity in this epochwas the presence of curved neu-

ral trajectories during the support of each prior; i.e., approxi-

mately between 480 and 800 ms in the Short prior and between

800 and 1,200 ms in the Long prior. The presence of this prior-

specific curvature was consistent with responses of single neu-

rons, many of which were selectively modulated during the

support of each prior (Figure 3Ai,iii,iv). This feature was ubiqui-

tous for all experimental conditions (Figure S3), although the

corresponding neural activity patterns resided in different parts

of the state space (Figure S4).

The curved portion of the trajectories associated with the two

prior conditions were parallel in the state space, suggesting that

they relied on similar patterns of activity (Figure S4). Notably, the

subspace for the 480 to 800ms of the Short prior was shared to a

greater extent with the subspace for the 800 to 1,200ms than the

480 to 800 ms of the Long prior (‘‘Short In Long’’; Figure S4).

These findings are consistent with the observation that activity

profiles of single neurons during the support of the prior were

similar across the two prior conditions (Figure 3A). These results

highlight a potential link between the curvature and the neural

representation of the prior.

In the production epoch, trajectories were at different initial

states at the time of Set (Figure 3G; Video S2). The Set flash

caused a rapid displacement of neural states, after which neural
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states evolved toward a terminal state (Go) at a progressively

slower rate for longer ts (Figure 3G). The prior-dependent

initial conditions, the Set-triggered transient response, and the

ts-dependent rate of evolution of firing rates were all evident in

the responses of many single neurons (Figure 3B). Both the

role of speed in the control of movement initiation time (Wang

et al., 2018) and the importance of initial state in adjusting the

speed (Remington et al., 2018a) have been demonstrated previ-

ously. The question that remains is how the brain establishes a

sigmoidal mapping during the support of the prior so that the

speed of the ensuing trajectories is appropriately biased accord-

ing to Bayesian integration.

Bayesian Estimation through Latent Dynamics
A property of a curved trajectory is that when projected onto a

line connecting its two ends, equidistant points along the trajec-

tory become warped. In other words, points near the ends of the

projected line become biased toward the middle (Figure 4A),

which qualitatively matches the sigmoidal mapping predicted

from the Bayesian model (Figure 2). Based on this realization,

we hypothesized that the curvature of neural trajectories during

the support of the prior provides a computational substrate for

Bayesian estimation. According to this hypothesis, which we

refer to as the ‘‘curved manifold hypothesis,’’ the animal’s

Bayesian behavior can be understood in terms of two computa-

tional stages (Figure 4B): (1) neural states evolving along the

curved trajectory during the support of the prior provide an im-

plicit, instantaneous representation of the Bayesian estimate of

ts (te), and (2) this Bayesian estimate adjusts the speed of the

neural trajectory in the production epoch, which, in turn, enables

animals to optimally bias their responses.

Encoding Bayesian Estimate along Curved Trajectory

during Prior Support

We asked whether projections of neural states along the curved

trajectory onto a one-dimensional ‘‘encoding axis’’ could estab-

lish a sigmoidal mapping similar to the Bayesian estimator (Fig-

ure 2A). Naturally, the answer depends on the choice of the

encoding axis. Based on our understanding of the geometry of

the problem (Figure 4A), we reasoned that a good candidate

for the encoding axis is the vector pointing from the states asso-

ciated with the shortest to the longest ts for each prior condition

(u; Figure 4B). Neural projections onto u exhibited biases that

matched the Bayesian model fitted to the behavior (R2 = 0.993

for the Short prior, 0.996 for the Long prior; Figure 4C), and

this match was specific to our choice of u (i.e., projection onto

other randomly chosen vectors in the state space failed to pro-

duce a sigmoidal function, Figure S5). Indeed, the neural projec-

tions were better explained by the Bayesian model than a linear

model for both priors (signed-rank test for root-mean-squared

error [RMSE], p = 0.008 for the Short prior, p = 0.008 for the

Long prior; Figure 4D). As a negative control, we also analyzed

neural data in the Long prior condition during a period temporally

matched to support of the Short prior (‘‘Short In Long’’ in Fig-

ure 4D) and found no evidence of sigmoidal representations

(two-way repeated-measures ANOVA for RMSE with the prior

conditions and the models as factors, F1,7 = 161.43, p < 10�5

for their interaction; post hoc signed-rank test between the

Bayesian and linear models for Short In Long, p = 0.74).
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Figure 4. Neural Signatures of Bayesian

Integration

(A) A geometric illustration of how linear projection

of points along a 2D curve onto a 1D line could

cause sigmoidal nonlinearity (gray dashed lines).

(B) The cascade of computations during the Ready-

Set-Go task for different sample intervals (ts). The

prior distribution of ts (leftmost panel) establishes

curved trajectory during the estimation epoch (sec-

ond leftmostpanel).Projectionofneural statesalong

the curved trajectory onto an encoding axis (purple

vector, u) creates a warped 1D representation of

time that exhibits prior-dependent biases. In the

ensuing production epoch (after the presentation of

Set), the initial conditions (second rightmost panel;

gray diamonds) reflect thewarped representation of

time and lead to biased speed profiles (dotted line,

unbiased speed profile with 1/ts, see F). The biased

speed profiles, in turn, allow the system to exhibit

Bayes-optimal behavior (rightmost panel).

(C) Projection of neural states in the estimation

epoch onto the encoding axis (u) as a function of ts
for a representative condition (monkey H, Hand

Left condition) along the Bayesian model fit to

behavior (line). Projections onto u (right ordinate

axis) were linearly mapped onto the tp range (left

ordinate axis) with two free parameters for scaling

and offset (circles, projections every 20 ms; red,

Short; blue:, Long; shaded area, 95% bootstrap

confidence intervals).

(D) Top: the difference between root-mean-

squared error (DRMSE) of the Bayesian and linear

model fits with the same number of free parame-

ters (red, Short; blue, Long; green, Short in Long;

see main text). Triangles at top show mean

DRMSE averaged across individual datasets

(2 animals 3 2 effectors 3 2 directions) for each

prior condition. Bottom: regression slope relating

neural projections to ts for the Short and Long prior

conditions (gray lines, individual datasets; black

line with colored circles, mean).

(E) Speed of neural trajectories from Set to Go as a

function of the projection of the neural state at Set

onto u. The speed was estimated by averaging

distances between successive bins of the states

in the state space (thin lines, individual datasets

across animals and conditions; thick line, average).

Error bars are SEM.

(F) Speed profile across ts within each prior. The dashed line represents the unbiased speed profile; we used the middle speed as reference, and scaled it

according to each interval assuming constant traveling distance. To ensure that speed biases were already present early in the production epoch, speeds were

computed as the average speed between Set and Set + 400 ms (i.e., initial speed). Results are presented in the same format as in (E).

(G) Average produced interval (tp) as a function of speed at which neural states evolved during the production epoch. Results are presented in the same format

as in (E).
A fundamental property of a Bayesian observer is that re-

sponses become more biased toward the mean of the prior

when measurements are more uncertain (Figure 2G). As pre-

dicted, in the RSG task, we find larger behavioral biases for the

Long prior condition (Figure 2H). Applying the same logic to

the neural data, if projections onto the encoding vector represent

te, they too should exhibit larger biases for the Long condition. A

direct comparison of projected neural states between the two

priors was consistent with this prediction: the Long prior ex-

hibited more bias than the Short prior as measured by slope

of a regression line relating projections to ts (signed-rank test,
p = 0.008; Figure 4D). Together, these results suggest that the

curved trajectory in DMFC allow neural states to carry an implicit

and instantaneous representation of te during the support of

the prior.

Controlling Speed Based on Bayesian Estimate during

the Set-Go Epoch

Previous work has demonstrated that flexible production of

timed intervals is made possible through adjustments of the

speed at which neural trajectories evolve toward an action-

triggering state (Afshar et al., 2011; Churchland et al., 2008;

Hanes and Schall, 1996; Wang et al., 2018). Accordingly, the
Neuron 103, 934–947, September 4, 2019 939



neural representations of te along the encoding axis should serve

as initial conditions to dictate the speed during the ensuing pro-

duction epoch (Figure 4B). We therefore examined the relation-

ship between speed and neural projections on the encoding

axis within each prior condition. For both conditions, larger pro-

jections along the encoding axis were associated with slower

speeds across all conditions (Figure 4E; Pearson correlation,

rShort = �0.74, p < 10�7, rLong = �0.51, p < 10�3). Crucially,

we also tested whether speeds inherited biases from the warped

organization of initial conditions at the time of Set. If Bayesian

computation occurs during the support of the prior, speeds

ought to incorporate the Bayesian biases immediately following

Set. Accordingly, we computed the speed of neural trajectories

early in the production epoch (i.e., initial speed) and examined

the relationship between initial speed and ts. An unbiased speed

profile predicts that the speeds should be proportional to 1/ts.

The speed profile for each prior condition, however, demon-

strated systematic biases with a central tendency: trajectories

associated with shorter ts were slower than expected from an

unbiased speed profile, and vice versa (Figure 4F; Wilcoxon

sign-rank test on measured versus unbiased regression slopes

relating speed to ts, p < 10�3 combining conditions and animals).

This biased speed profile is fully consistent with the pattern seen

in the behavior. Finally, we verified that the overall speed of

dynamics throughout the production epoch was predictive of

the resulting tp across both priors and across all experimental

conditions (Figure 4G; Pearson correlation, rShort = �0.58,

p < 10�4, rLong = �0.52, p < 10�3). Together, these results sup-

port the curved manifold hypothesis according to which the

curved trajectory supplies a Bayesian estimate of elapsed

time, which controls the speed of dynamics during the produc-

tion epoch allowing animals to produce Bayes-optimal behavior.

Alternative Mechanisms
We considered three alternative mechanisms that could, in prin-

ciple, establish a Bayesian sigmoidal mapping.

Speed Hypothesis

Bayesian integration through modulation of speed in the estima-

tion epoch. One way to create a sigmoidal warping is to have

neural states near the two ends of the prior evolve more slowly

than near the prior mean (Figure 5A). We tested this hypothesis

by estimating the instantaneous speed of neural trajectories

throughout the support of each prior. Results were not consis-

tent with these predictions: for both prior conditions, speed

remained unmodulated throughout the support of each prior

(Figure 5B; signed-rank test for zero regression slopes during

the support, p = 0.64 for Short, p = 0.08 for Long).

Transient Hypothesis

Bayesian integration by shaping the post-Set transient. Another

way to create sigmoidal warping is to have the Set-triggered

transient converge in the state space so as to elicit a bias in

neural states toward the prior mean (Figure 5C). To test this alter-

native, we computed the distance between neural trajectories

during the first 200 ms following Set. Results indicated that neu-

ral trajectories for different ts in each prior evolved parallel to one

another (signed-rank test for zero regression slopes relating the

distance to time after Set, p = 0.92 for the shortest ts, p = 0.13 for

the longest ts, across datasets and priors; Figure 5D; see also
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Figures 3G and S3). This suggests that the Set caused a ts-inde-

pendent transient response in DMFC that did not contribute

significantly to the bias.

Threshold Hypothesis

Bayesian integration by establishing ts-dependent movement

thresholds. Finally, the biases could be induced by influencing

the action-triggering state threshold (Figure 5E). If the threshold

for fast trajectories (associated with shorter ts) is pushed further

away, the neural trajectories would have to travel a longer dis-

tance before reaching the action-triggering state, which would

generate a positive bias. This model predicts, in particular, that

states at the time of threshold-crossing should be different

across ts but more similar shortly before reaching the threshold

due to speed differences (Figure 5E, left). The distance between

neural trajectories should therefore decrease to a minimum

before movement initiation and increase again to reflect the

ts-dependent threshold at the time of Go (Figure 5E, right).

However, the distance profile of neural trajectories did not

show this converging-diverging pattern; instead, the distance

between trajectories appeared to drop steadily throughout the

production epoch, even near the time of motor initiation (Fig-

ure 5F; one-tailed sign-rank test for time of minimum distance

occurring strictly before movement initiation, p = 1.5 3 10�4,

see Figure S5 for individual condition and animal).

The Curved Manifold Hypothesis Captures the Variance
of Bayesian Estimates
Next, we asked whether the curved manifold hypothesis could

additionally account for the variance of te. According to the

Bayesian model, the variance of te as a function of ts exhibits

an inverted-U shape (Figure 6A): the sigmoidal mapping causes

estimates near the extrema of the prior to be more biased and

less variable than estimates near the mean of the prior, which

are unbiased but more variable.

From a geometrical standpoint, neural states projected onto

the encoding axis would be able to readily capture this in-

verted-U pattern if a sizeable portion of variance across trials is

aligned to the curvature (Figure 6A). To test this possibility, we

needed to derive accurate, trial-by-trial estimates of neural

states. Such analysis is challenging but tractable if two condi-

tions are concurrently met (Pandarinath et al., 2018; Williams

et al., 2018; Yu et al., 2009): (1) data include sufficiently large

number of simultaneously recorded neurons, and (2) neural tra-

jectories are governed by a small number of latent factors. Under

these assumptions, Gaussian process factor analysis (GPFA)

can recover reliable estimates of single-trial neural trajectories

(Afshar et al., 2011; Cowley et al., 2013; Yu et al., 2009).

We therefore focused our analysis on high-yield sessions

(n = 48 for monkey H, n = 107 for monkey G) and used GPFA

to extract high-fidelity, single-trial neural trajectories for the

estimation epoch. We projected the neural states at the time

of Set onto the encoding axis and computed the variance of

the projections for each ts separately (Figure 6B; see STAR

Methods). The resulting variance profile of single-trial projec-

tions resembled an inverted U shape on average, with a

tendency for lower variances at the extrema of each prior

(one-tailed signed-rank test on coefficients for quadratic term

in polynomial fitting, p = 0.0273, Figure 6C; see Figure S6 for
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Figure 5. Alternative Mechanisms

(A) Speed model (H1). Top: Bayesian estimation

during the support of the prior (shaded red)

through modulation of speed. Bottom: if speed of

neural trajectory is modulated according to an in-

verted U shape (accelerating then decelerating;

right), projections off of the trajectory would exhibit

regression to the mean (gray dashed lines).

(B) Instantaneous speed of neural trajectories

during the estimation epoch for Short (red) and

Long (blue) prior conditions computed in the full

neural state space (thin lines, individual conditions

for each animal; thick line, averages; shaded re-

gions, SEM). Speeds were relatively constant

during the support of the prior and did not follow

the pattern predicted by H1.

(C) Transientmodel (H2). Top: Bayesian estimation

through transient responses triggered by Set

(shaded red). Bottom: the Set flash could push the

system along slightly converging trajectories

across ts causing regress to the mean. This pre-

dicts a reduction of distance between consecutive

trajectories shortly after Set (right).

(D) Distance between neural trajectories during the

first 200 ms following Set. For each prior, we used

the trajectory associated with the middle ts as

reference (horizontal lines at y = 0). For each time

point along the reference trajectory, we computed

the distance to the four other trajectories within

each prior (shaded regions: SEM across datasets).

Trajectories were analyzed using PCA between

Set and Set + 200 ms across the two prior con-

ditions (>75% variance explained). Distances

were relatively fixed and did not converge as

predicted by H2.

(E) Threshold model (H3). Top: Bayesian estima-

tion through adjustment of threshold at the time of

Go (shaded red). Bottom: if action-triggering

states (curved dashed line) are biased such that

faster trajectories (i.e., associated with shorter ts)

have to travel longer distances to reach the

threshold, threshold-crossing times (triangles)

would exhibit regression to the mean even with

unbiased speeds (left). This predicts a distinctive nonmonotonic organization of neural trajectories: distances between trajectories associated with different ts
exhibit a large-small-large (squares-circles-triangles) pattern before the Go response (right).

(F) Distance between neural trajectories aligned to the motor response. Similar to (D), we used the middle trajectory as reference for the two prior conditions (left

for Short, right for Long). Distances decreasedmonotonically and did not follow the distinctive pattern predicted by H3. Shaded area represents 95% confidence

interval across conditions and animals. Distances were computed in the PC space obtained across ts and accounted for �60% of the total variance; results

remained unchanged when more PCs were included.

See also Figure S5.
monkey G). This analysis indicates that the curved manifold

hypothesis can additionally predict the second-order statistics

of the Bayesian estimate. We also confirmed that the mean of

the single-trial projections inferred from GPFA had a sigmoidal

shape (signed-rank test between increments of mean Xu

around extreme ts versus those near middle ts, p = 0.0078)

and higher slope for the Short prior (one-tailed signed-rank

test for regression slope between Short and Long, p =

0.0625; Figure 6D), consistent with results inferred from the

trial-averaged firing rates (Figure 4C), and the behavior of the

Bayesian estimator (Figures 2F and 2H). Finally, the single-trial

neural state estimates derived from the GPFA analysis enabled

us to validate the three-way relationship between neural states
during the support of the prior (before Set), the speed of neural

trajectories after Set, and the resulting tp (Figure S6).

Recurrent Network Models of Cortical Bayesian
Integration
RNN models have proven useful in elucidating how neural pop-

ulations in higher cortical areas support variousmotor and cogni-

tive computations (Mante et al., 2013; Rajan et al., 2016; Song

et al., 2016; Sussillo et al., 2015; Yang et al., 2019). To gain

further insight into how neural systems implement Bayesian

inference, we trained RNNs to perform the two-prior RSG task

(Figure 7A). On each trial, the network received a fixation cue

as a tonic input whose value was adjusted by the prior condition.
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Figure 6. Trial-by-Trial Analyses

(A)Ageometric interpretationofhowacurvedneural

trajectory could establish the bias-variance trade-

off expected from the sigmoidal Bayesian estimator

in our task. Curvature causes neural states near the

two ends to be mapped onto a relatively narrow

range (smaller error bars). This squashes variability

and predicts an inverted-U profile for variance of

neural projections (Xu) as a function of ts (inset).

(B) Single-trial estimate of neural states (X). Bottom:

neural trajectories during the support of the Short

(red) and Long (blue) prior conditions based on

neural state estimates derived from a Gaussian

process factor analysis (GPFA; seeSTARMethods).

Top: neural states for each ts projected onto the

encoding axis (u).

(C)Varianceofprojectedneural states (Xu) across ts.

We Z-scored Xu of all trials before computing the

variance for each ts (thin lines: individual conditions;

thick line: averages across conditions; shadedarea:

SEM across conditions).

(D) Projected neural states averaged across single-

trials as a function of ts for both priors.

See also Figure S6.
A second input administered the Ready and Set via two pulses

that were separated by ts. The network was trained to generate

a linear ramping signal during Set-Go that would reach a fixed

threshold (‘‘Go’’) at the correct time to reproduce ts. Using a suit-

able training strategy (see STARMethods), we were able to build

RNNs whose behavior was captured by a Bayesian observer

model (Figure 7B).

Like DMFC neurons, RNN units displayed heterogeneous

response profiles and were strongly modulated during the sup-

port of the prior (Figure S7). Similar to DMFC, the overall

network activity was low dimensional during both the estima-

tion and production epochs (Figure S7). Most importantly,

network population trajectories exhibited the geometric fea-

tures of neural trajectories in DMFC. For instance, the network

trajectories also exhibited curvature during the support of the

prior (Figures 7C and S7). Finally, during the production epoch,

the initial condition and speed of trajectories were organized by

ts (Figure 7C).

Next, we developed an on-manifold perturbation protocol to

probe the causal link between the curvedmanifold and Bayesian

integration. We allowed the network to evolve during the Ready-

Set epoch, suspended the dynamics shortly before Set, placed

the network into a desired altered state, and released the

network to observe the effect of this perturbation on the behavior

(see STAR Methods for control experiments). The perturbation

was designed to systematically displace neural states along

the encoding axis—a strategy that we refer to as re-encoding.

We reasoned that, if indeed the curved manifold and the encod-

ing vector u are responsible for warping the neural representa-

tions of time, then perturbing the network states along the mani-

fold should alter the behavior in a predictable manner.
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Using this strategy, we perturbed

the network activity in two ways: (1)

compression along u toward the middle
ts (mean of the prior), and (2) linear translation along u. According

to our hypothesis, the projection of activity along u provides an

implicit representation for the Bayesian estimate of ts. The

compression should therefore lead to increased bias toward

the mean ts (Figure 7D). The translation, on the other hand,

should result in a systematic shift in the values of tp toward longer

or shorter intervals (Figure 7E) depending on the direction of the

translation. Results confirmed these predictions: tp values ex-

hibited progressively larger regression to the mean for larger

compressive perturbations (Figure 7D) and underwent an overall

upward or downward shift as a result of translation (Figure 7E).

These in silico experiments provide additional evidence for a

potential causal role of the curved manifold in Bayesian

computation.

DISCUSSION

The central challenge in understanding Bayesian computations

is the need for a framework that can bridge explanations across

multiple scales. Most previous studies sought to understand

Bayesian integration at the level of single neurons. This was

also our starting point. We found that prior beliefs and sensory

measurements concurrently modulated the firing rates of single

neurons (Figure 3). Many previous studies have made similar

observations. For example, some studies found that the sto-

chastic nature of spiking activity in single neurons could provide

the means to implicitly encode sensory likelihoods (Jazayeri

and Movshon, 2006; Ma et al., 2006). Others found that task-

related firing rates of single neurons before the presentation of

sensory information may be modulated by prior expectations

(Basso and Wurtz, 1997; Rao et al., 2012), and firing rates after
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Figure 7. RNNModel ofBayesian Integration

(A) Schematic of RNN experimental design. RNN

received two inputs. One provides a tonic input

encoding the prior condition (Short: red; Long:

blue), and the other supplies two pulses repre-

senting Ready (R) and Set (S). The network was

trained to generate a linearly ramping output

whose slope was inversely related to the sample

interval between R and S (ts). The Go response

(G) was elicited when the output reached a

threshold (dashed line). The production interval

(tp) was measured as the time between S and G.

(B) Network behavior shown using the same format

as in Figure 1E. Inset top: bias (circles) and vari-

ance (triangles) of network responses compared to

that of a Bayesian model for the Short (red) and

Long (blue) prior conditions using the same pro-

cedure as Figures 2C and 2D. Inset bottom:

regression coefficient analysis for the two priors

(same color scheme) for different network runs.

(C) Network unit trajectories shown using the

same format as Figures 3F and 3G.

(D) Top: schematic showing perturbed states

(white circle) that are compressed toward the

state associated with the mean ts (arrows) relative

to the original states (gray circles). Bottom:

network behavior with no compression (dark hue,

neutral re-encoding), with 40% compression (in-

termediate hue, and with 80% compression (light

hue) for the Short (red) and Long (blue) prior con-

ditions. Solid lines represent corresponding fits to

the Bayesian model.

(E) Same as (D) for translational perturbation with

either 20% positive translation along the moving

trajectory or 20% negative translation against

the moving trajectory. Solid lines represent the

Bayesian model translated by an offset.

See also Figure S7.
the presentation of sensory information may reflect Bayesian es-

timate of behaviorally relevant variables (Beck et al., 2008; Funa-

mizu et al., 2016; Hanks et al., 2011; Jazayeri and Shadlen,

2015). There have also been attempts to apply reliability-

weighted linear updating schemes—commonly used in cue

combination studies (Angelaki et al., 2009; Fetsch et al., 2009;

Gu et al., 2008)—to explain how single-neurons might combine

sensory evidence with prior expectations (Darlington et al.,

2018; Orban de Xivry et al., 2013). Together, these results have

provided valuable insights into single-neuron representations

of prior beliefs and sensory measurements. However, probing

the system at the level of single neurons has not led to a princi-

pled understanding of the computational logic that populations

of neurons implement to perform Bayesian integration.

To address this challenge, we investigated population neural

activity using a framework that is rooted in the language of

dynamical systems. The behavior of a dynamical system is con-

strained by the coupling between interacting variables in the sys-

tem (Remington et al., 2018b). Recent theoretical studies have

found that the same framework can be used to explain how syn-
aptic coupling between neurons constrains the population activ-

ity pattern across a network of recurrently interacting neurons. In

particular, it has been shown that structured connectivity in RNN

models establishes low-dimensional manifolds with powerful

computational capacities (Mastrogiuseppe and Ostojic, 2018)

for integration (Wang, 2008), categorization (Chaisangmongkon

et al., 2017), gating (Mante et al., 2013), timing (Goudar and Buo-

nomano, 2018; Laje and Buonomano, 2013; Remington et al.,

2018a; Wang et al., 2018), learning (Athalye et al., 2017; Golub

et al., 2018; Sadtler et al., 2014), movement control (Gallego

et al., 2017; Hennequin et al., 2014; Kaufman et al., 2014;

Michaels et al., 2016; Shenoy et al., 2013; Sussillo et al., 2015),

and forming addressable memories (Hopfield, 1982). According

to this framework, the computations that a neural system per-

forms can be understood through an analysis of the geometry

and dynamics of activity across the population (Gallego et al.,

2017, 2018; Remington et al., 2018a; Sussillo, 2014).

Using this approach, we found a simple computational princi-

ple for how neural circuits perform Bayesian integration. We

found that prior statistics that were presumably embedded in
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the coupling between neurons, established low-dimensional

curved manifolds across the population. This curvature, in turn,

warped the underlying neural representations giving rise to

biased responses consistent with Bayes-optimal behavior. This

mechanism was evident across multiple behavioral conditions

including different prior distributions and different effectors sug-

gesting that it may entail a general computational strategy for

Bayesian integration.

Notably, the curved manifold not only explained the prior-

dependent bias but also accounted for the drop in variance of

single-trial Bayesian estimates near the extrema of the prior,

consistent with the predictions of a Bayesian estimator. The

fact that the variance of projected states as a function of ts ex-

hibits an inverted-U shape suggests that a large fraction of

variability occurs along the trajectory (Figure 6A). This implies,

in turn, that one of the main contributors of noise in the system

might be the speed of the trajectory (Hardy et al., 2018; Mello

et al., 2015; Wang et al., 2018).

This computational strategy also emerged in an RNN model

trained on the same task.While previous work has demonstrated

that artificial network models can perform a variety of sensory,

motor, and decision-making tasks (Chaisangmongkon et al.,

2017; Mante et al., 2013; Remington et al., 2018a; Wang et al.,

2018; Yang et al., 2019), training networks to encode and

integrate prior beliefs has remained a challenge. Relying on our

understanding of the importance of signal-dependent noise in

timing (Hardy et al., 2018; Mello et al., 2015; Wang et al.,

2018), we were able to create a suitable training strategy that al-

lowed the networks to integrate prior beliefs. In particular, we

found that, among multiple training regimes with different types

of noises (see STAR Methods), introduction of external noise

mimicking scalar measurement variability was key to inducing

the prior-dependent bias in the network.

One of the most highly sought-after advancements in sys-

tems neuroscience is an ability to exert full control over neural

activity, which would allow the experimenter to investigate

the behavioral and neural consequences of setting the popula-

tion activity to a specific state (Jazayeri and Afraz, 2017). This is

currently impossible because we do not have a technique that

can adjust the firing rates of many neurons concurrently,

although notable efforts in this direction have been made (Ba-

shivan et al., 2019; O’Connor et al., 2013; Ponce et al., 2019).

The possibility of such concurrent modification would be

extremely valuable in further testing the merits of our curved

manifold hypothesis, as it would allow us to validate whether

neural states along the curved trajectory truly encode the

animal’s internal estimates. Although it was not possible to

perform this experiment in vivo, establishing an RNN model of

Bayesian integration allowed us to causally probe potential un-

derlying mechanisms by performing such targeted population-

level perturbations in silico. The results of these experiments

validated two key aspects of the curved manifold hypothesis:

the orderly organization of the Bayesian estimates along the

trajectory, and the role of the curvature in inducing regression

toward the mean of the prior. Given the overall similarities of

in vivo and in silico networks in terms of the response properties

associated with Bayesian integration (Figures 7 and S7), this

causal validation of the mechanism in silico provides tantalizing
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evidence that future experiments may find analogous results

in vivo.

To put our findings in perspective, it is important to distinguish

between the classic formulation of Bayes-optimal integration

and the various algorithms the brain might use to optimize

behavior in accordance with Bayesian theory. The classic formu-

lation of Bayesian integration defines the likelihood function and

prior probability distribution explicitly and uses them to compute

a posterior distribution fromwhich an optimal estimate can be in-

ferred depending on a desired cost function. However, the deri-

vation of optimal estimates from sensory measurements can be

implemented by numerous isomorphic computational algo-

rithms that do not necessarily depend on an explicit representa-

tion of the likelihood and/or the prior (Fiser et al., 2010; Ma and

Jazayeri, 2014; Raphan and Simoncelli, 2006). Indeed, theoret-

ical (Simoncelli, 2009) and behavioral (Acerbi et al., 2012;

Jazayeri and Shadlen, 2010; Stocker and Simoncelli, 2006)

studies have highlighted that Bayes-optimal behavior can be im-

plemented by simple deterministic functions that map noisy

measurement to optimal estimates. Our work supports this hy-

pothesis; it shows that recurrent interactions between neurons

establish manifolds whose geometry confers upon the popula-

tion activity patterns an implicit representation of the optimal es-

timate without relying on explicit representations of the prior dis-

tribution and/or the likelihood function.

Although we focused on Bayesian integration in the domain of

time, the key insights gleaned from our results may apply more

broadly to perception, sensorimotor function, and cognition.

For example, numerous studies have found an important role

for natural scene statistics in vision and have shown that the

organization of tuning in neurons of the primary visual cortex fol-

lows those statistics (Simoncelli and Olshausen, 2001). This

observation is often explained in terms of efficient coding (Gang-

uli and Simoncelli, 2014; Simoncelli and Olshausen, 2001). In this

framework, neurons form heterogeneous basis sets that are

tuned to statistics of the environmental variables. In our timing

task, we also found single neurons that developed flexible tuning

for the support of each of the two priors (Figure 3). In other words,

single neurons in our experiment also abided by the principles of

efficient coding. However, our work goes beyond the represen-

tational notion of efficient coding and provides an understanding

of how populations of neurons perform behaviorally relevant

computations. In particular, our results suggest that statistical

regularities in the environment create geometrically constrained

manifolds of neural activity that can suitably perform Bayesian

integration.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experimental procedures conformed to the guidelines of the National Institutes of Health and were approved by the Committee of

Animal Care at the Massachusetts Institute of Technology. Experiments involved two naive, awake, male behaving monkeys (spe-

cies: M. mulatta; ID: H and G; weight: 6.6 and 6.8 kg; age: 4 years old). Animals were head-restrained and seated comfortably in a

dark and quiet room, and viewed stimuli on a 23-inch monitor (refresh rate: 60 Hz). Eye movements were registered by an infrared

camera and sampled at 1kHz (Eyelink 1000, SR Research Ltd, Ontario, Canada). Hand movements were registered by a custom

single-axis potentiometer-controlled joystick whose voltage output was sampled at 1kHz (PCIe6251, National Instruments, TX).

The MWorks software package (https://mworks-project.org) was used to present stimuli and to register hand and eye position.

Neurophysiology recordings were made by 1-3 24-channel laminar probes (V-probe, Plexon Inc., TX) through a bio-compatible cra-

nial implant whose position was determined based on stereotaxic coordinates and structural MRI scan of the two animals. Analysis of

both behavioral and spiking data was performed using custom MATLAB code (Mathworks, MA).

METHOD DETAILS

Two-Prior Time-Interval Reproduction Task
Task Contingencies

Animals were trained on an interval-timing task that we refer to as the Ready-Set-Go (RSG) in which they had to measure a sample

interval, ts, and produce a matching interval tp by initiating a saccade or by moving a joystick. Each experimental session consisted

of 8 randomly interleaved conditions, 2 effectors (Hand and Eye), 2 movement targets (Left and Right), and 2 prior distributions of ts
(Long and Short).

Trial Structure

Each trial began with the presentation of a circle (diameter: 0.5 deg) and a square (side: 0.5 deg) immediately below it. Animals had to

fixate the circle and hold their gaze within 3.5 deg of it. The square instructed animals to move the joystick to the central location. To

aid the hand fixation, we briefly presented a cursor whose instantaneous position was proportional to the joystick’s angle and

removed it after successful hand fixation. Upon successful fixation and after a random delay (500 ms plus a random sample from

an exponential distributionwithmean of 250ms), a whitemovement target was presented 10 deg to the left or right of the circle (diam-

eter: 0.5 deg). After another random delay (250 ms plus a random sample from an exponential distribution with mean of 250 ms), the

Ready and Set stimuli were flashed sequentially around the fixation cues (outer diameter: 2.2 deg; thickness: 0.1 deg; duration:

100 ms). The animal had to measure the sample interval, ts, demarcated by Ready and Set, and produce amatching interval, tp, after

Set by making a saccade or by moving the joystick toward the movement target presented earlier (Go). Across trials, ts was sampled

from one of two discrete uniform prior distributions, each with 5 equidistant samples, a ‘‘Short’’ distribution between 480 and 800 ms

(mShort = 640 ms, s2
Short = 8533 ms2), and a ‘‘Long’’ distribution between 800 and 1200 ms (mLong = 1000 ms, s2

Long = 13333 ms2).
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The 4 conditions associated with the 2 effectors and 2 prior conditions were interleaved randomly across blocks of trials. For 15 out

of 17 sessions, the block size was set by a minimum (3 and 5 trials for H and G, respectively) plus a random sample from a geometric

distribution with amean of 3 trials that was capped at amaximum (20 for H and 25 for G). The resultingmean ± SD block lengths were

4.0 ± 4.4 and 13.3 ± 3.1 trials for H and G, respectively. In 2 sessions in H, switches occurred on a trial-by-trial basis. Because animal

G had more trouble switching between conditions, block switches involved a change of prior or effector but not both. The position of

the movement target was randomized on a trial-by-trial basis. Throughout every trial, the fixation cue provided information about the

underlying prior and the desired effector. One of the two fixation cues was colored and the other one was white. The animal had to

respond with the effector associated with the colored cue (circle for Eye and square for Hand), and the cue indicated the prior con-

dition (red for Short and blue for Long).

To receive reward, animals had tomove the desired effector in the correct direction, and themagnitude of the relative error defined

as jtp-tsj/ts had to be smaller than 0.15. When rewarded, reward decreased linearly with relative error, and the color of the response

target changed to green. Otherwise, no reward was given and the target turned red. Trials were aborted when animals broke the eye

or hand fixation prematurely before Set, used incorrect effector, moved opposite to the target direction, or did not respond within

3ts after Set. To compensate for lower expected reward rate in the Long prior condition due to longer duration trials (i.e., longer

ts values), we set the inter-trial intervals of the Short and Long conditions to 1220 ms and 500 ms, respectively.

Electrophysiology
Recording

We recorded from 617 and 741 units in monkey H and G, respectively in the dorsomedial frontal cortex (DMFC), comprising supple-

mentary eye field (SEF), presupplementary motor area (Pre-SMA), and dorsal portion of the supplementary motor area (SMA). No

recordings were made in the medial bank. Regions of interest were selected according to stereotaxic coordinates with reference

to previous studies recording from the SEF (Fujii et al., 2002; Huerta and Kaas, 1990; Schlag and Schlag-Rey, 1987; Shook et al.,

1991) and Pre-SMA (Fujii et al., 2002; Matsuzaka et al., 1992), and the existence of task-relevant modulation of neural activity.

Recorded signals were amplified, bandpass filtered, sampled at 30 kHz, and saved using the CerePlex data acquisition system

(Blackrock Microsystems, UT). Spikes from single-units and multi-units were sorted offline using Kilosort software suites (Pachitariu

et al., 2016). We collected 456 single-units (H:196, G:260) and 902 multi-units (H:421, G:481) in 69 penetrations across 29 sessions

(H:17, G:12).

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of Behavior
Model Free Analysis of Behavior

We analyzed behavior in sessions with simultaneous neurophysiological recordings (H: 17 sessions, 26189 trials, G: 12 sessions,

30777 trials). First, we used a probabilistic mixture model to exclude outliers from further analysis. The model assumed that each

tp was either a sample from a task-relevant Gaussian distribution or from a lapse distribution, which we modeled as uniform distri-

bution extending from the time of Set to 3ts. We fit the mean and standard deviation of the Gaussian for each unique combination of

session, prior condition, ts, effector, and target directions. Using this model, we excluded any trial in which tpwasmore likely sampled

from the lapse distribution (3.84% trials in H and 5.7% trials in G).

Wemeasured the relationship between tp and ts separately for each combination of prior, effector, and target direction in individual

sessions using linear regression (tp = bts+ε). Since tp is more variable for larger ts due to scalar variability, we used a weighted regres-

sion; i.e., error terms for each ts were normalized by the standard deviation of the distribution of tp for that ts. We tested whether

regression slopes were larger than 0 and less than 1 (Figures 1 and S1; Table S1).

Analysis of Behavior with a Bayesian Model

We fit a Bayesian observer model to behavioral data (Figure 2). The Bayesian observer measures ts using a noisy measurement pro-

cess that generates a variable measured interval, tm. The measurement noise has a Gaussian distribution with a mean of zero and a

standard deviation that scales with tswith constant of proportionalitywm. The observer combines the likelihood function, p(tmjts), with

the prior, p(ts), and uses the mean of the posterior, p(tsjtm), to compute an estimate, te. For a uniform prior, and under scalar property

of timemeasurements, the mapping between te and tm is sigmoidal (Figure 2). The observer aims to produce te through another noisy

process generating a variable tp. We assumed that production noise scales with tewith constant of proportionalitywp. For each prior,

the model also included an offset term (b) to accommodate any overall bias in tp. Using maximum likelihood estimation (MLE), we fit

the 4 free parameters of the model (wm, wp, bShort, and bLong) to data for each animal, effector, and target directions after pooling

across sessions (Table S3).

Analysis of Single- and Multi-Unit Activity
Most analyses were performed in a condition-specific fashion (2 priors, 5 ts per prior, 2 effectors, and 2 directions). We excluded units

for which we had less than 5 trials per condition, and units whose average firing rate was less than 1 spike/s. The remaining units

included in subsequent analyses were 536 and 636 in H and G, respectively. To plot response profile of individual neurons

(Figures 3A–3C), we smoothed averaged spike counts in 1-ms bins using a Gaussian kernel with a standard deviation of 25 ms.
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Generalized Linear Model

We used a generalized linear model (GLM) to assess which neurons were sensitive to the prior and ts. Wemodeled spike counts in an

80-ms window immediately before Set, rSet, as a sample from a Poisson process whose rate was determined by a weighted sum of a

binary indicator for prior (Iprior: 1 for Long, 0 for Short) and 5 binary indicators for ts values (Its) associated with the Short prior for which

we also knew the firing rate for the Long prior. Themodel was augmented by 2 additional binary indicators to account for independent

influences of the effector (Ieffector: 1 for Hand, 0 for Eye), and direction (Idirection:1 for Left, 0 for Right).

rset =
X5

j = 1
btsItsðjÞ+ bprior Iprior + beffector Ieffector + bdirectionIdirection Equation 1

To get themost reliable estimate for the regressionweights, we included spike counts based on all trials with attrition (i.e., firing rate at

time twas computed from spikes in all trials in which Set occurred after t), and estimated b parameters of the model using MLE for all

included neurons. To assess the significance of the effect of the prior condition, we used Bayesian information criteria (BIC) to

compare the full model (Equation 1) to a reduced model that did not include a regressor for the prior (Equation 2):

rset =
X5

j = 1
btsItsðjÞ+ beffector Ieffector + bdirectionIdirection Equation 2

We also used a GLM to assess which neurons were sensitive to ts. Since values of ts were different between the priors, we used two

distinct GLMs, one for data in the Short prior and one for the Long prior (Equation 3):

rset =
X5

j = 1
btsItsðjÞ+ beffector Ieffector + bdirectionIdirection Equation 3

Equation 3 has the same format as Equation 2 but was used to assess neural data in the two prior conditions separately. To identify

the neurons that were sensitive to ts, we used BIC to compare the ts-dependent GLM (Equation 3) to a reduced GLM in which there

was no sensitivity to ts (Equation 4):

rset = b0 + beffector Ieffector + bdirectionIdirection Equation 4

Neurons were considered ts-dependent if the BIC was lower in the full model either for the Short or for the Long prior condition

(Figure 3).

Analysis of Population Neural Activity
Principal Component Analysis

To examine the trajectory of population activity in state space, we applied principal component analysis (PCA) to condition-specific,

trial-averaged firing rates (bin size: 20ms, Gaussian smoothing kernel width: 40ms). Since neuronsmodulated during estimation and

production epochs were largely non-overlapping (Figure S4), we performed PCA separately on the two epochs. We first constructed

firing rate matrices of all neurons and time points [time points x neurons]. This yielded 16 matrices (2 priors x 2 effectors x 2

directions x 2 epochs). We then concatenated the matrices across the two prior conditions along the time dimension and applied

PCA to each of the resulting 8 datamatrices to find principal components (PCs) for each unique combination of effector and direction,

separately in the two epochs.

In the estimation epoch, firing rates for each tswere estimated with attrition (i.e., firing rate at time twas computed from spikes in all

trials in which Set occurred after t). However, results were qualitatively unchanged if firing rateswere estimatedwithout attrition. In the

production epoch, to accommodate different trial lengths (i.e., variable tp), we estimated firing rates only up to the shortest tp for

each ts. Neural trajectories in the two epochs were analyzed within the subspace spanned by the top PCs that accounted for at least

75% of total variance (Figure S3). We will use X(t) to refer to a neural state within the PC space at time t.

Analysis of Neural Projection

In the estimation epoch, we examined the curvature in neural trajectories during the support of each prior by projecting X(t) onto

an ‘encoding axis’, u, defined by a unit vector connecting the state associated with the shortest ts (ts_min) to that with the longest

ts (ts_max) for that prior. We denote the projected states by Xu. To reduce estimation error, we computed multiple difference vectors

connecting X(ts_min+Dt) to X(ts_max-Dt) for every Dt = 20 ms, and used the average as our estimate of u. We used bootstrapping

(resampling trials with replacement 1000 times) to compute 95% confidence interval for Xu. We quantified the similarity between

Xu and the Bayesian estimates (te) inferred from model fits to behavior using linear regression (Xu = a + bte). Since we included

spike counts across trials with attrition, there were nearly 5 times more data for the shortest ts compared to the longest ts within

each prior. Accordingly, for each ts, error terms were weighted by the number of data points included for that ts (5 for the shortest

ts, 4 for the second shortest, and so forth). We then used the coefficient of determination (R2) to assess the degree to which te was

explained by the neurally inferred Xu. To further validate the warping hypothesis that Xu encodes te, we tested whether any linear

model of ts (Xu = a + bts) can fit Xu better. The number of free parameters (a, b) were matched between the Bayesian and linear

models as te was computed only from behavioral data. The model fit was compared in terms of Root Mean Squared Error (RMSE)

between the actual and predicted Xu for individual datasets (2 animals x 2 effectors x 2 directions). As a negative control of our

analysis, we applied the same projection analysis to data of the Long prior from 480 ms to 800 ms after Ready, which corre-

sponded to the support of the Short prior (‘Short In Long’). We also compared the slope b for ts between the two prior conditions
e3 Neuron 103, 934–947.e1–e5, September 4, 2019



(Figure 4D) as we performed in the behavioral analysis (Figures 2G and 2H). Finally, we tested the specificity of our results with

respect to the chosen u by performing the same analysis for 1000 randomly chosen encoding axes (u’), and comparing the cor-

responding R2 values (Figure S5).

We examined two later links of the cascade model (Figure 4B) during the production epoch. A key component in the production

epoch was the speed of the neural trajectory traveling the state space. For each dataset, we computed the speed as the average

Euclidean distance (in the PC space accounting for at least 75% of the total variance) between neural states associated with suc-

cessive bins (20 ms), divided by the duration separating Set and the time of Go. First, we related the trajectory speed to the projected

state along the encoding axis (u) across the prior and ts to test if the state served as an initial condition to set up the speed of the

ensuing trajectory (Figure 4E). We then assessed how the speed during the production epoch was associated with the behavioral

output, tp (Figure 4G). We computed a correlation coefficient between the tp averaged across trials of each dataset and the trajectory

speed and tested its statistical significance (p < 0.05).

Test of Alternative Mechanisms

To test alternative neural models for generating bias (Figure 5), we focused on two main features of neural trajectories: speed and

distance across trajectories of the different priors and ts. We applied PCA as before but only to the period of interest for each

alternative model (from Set to Set+200 ms for the ‘Set transient model’, from Go-800 ms to Go for the ‘Threshold model’). For the

‘Speed model’, we estimated instantaneous speed of the trajectory in the full neural space to avoid any potential distortion by

smoothing and PCA (Figure 5B). For distance metric, trajectory of the middle ts (i.e., prior mean) was used as a reference from which

the distance was computed (Figures 5D and 5F).

Analysis of Neural State Variance

To estimate variance of neural states across individual trials during the support of the prior (Figure 6A), we used the following

procedure. 1) We estimated the single-trial neural trajectories by applying Gaussian Process Factor Analysis (GPFA) (Cowley

et al., 2013; Yu et al., 2009) to data from simultaneously recorded neurons in a single session (n = 48 in H, n = 107 in G)

with cross validation. GPFA allowed us to avoid arbitrarily selecting size of the smoothing kernel and to estimate shared vari-

ability across population of neurons. 2) We projected the single-trial states onto the encoding vector u (Figure 6B). 3) We calcu-

lated variance and mean of the neural projections for each ts in each prior condition. We also used GPFA to obtain single-trial

estimate of the trajectory speed during the production epoch. We examined correlation between the trial-by-trial speed and the

neural projection (Figure S6) and correlation between the speed and tp across trials (Figure S6). To ensure that our analysis

correctly captured the trial-by-trial relationship between speed and tp and not their co-dependence on ts (Figures 4E and

4G), we measured correlations after z-scoring single-trial data for each ts and used the total-least-squares algorithm to ensure

that the estimation errors of both speed and tp were taken into account.

Recurrent Neural Network
We constructed a randomly connected firing-rate recurrent neural network (RNN) model with N = 200 nonlinear units. The network

dynamics were governed by the following equations:

t _xðtÞ = � xðtÞ+
X

JrðtÞ+
X

BuðtÞ+ cx + rxðtÞ Equation 5
rðtÞ= tanhðxðtÞÞ Equation 6

xðtÞ is a vector containing the activity of all units and rðtÞ represents the firing rates of those units, obtained by a nonlinear transfor-

mation of x. Time twas sampled everymillisecond for a total duration of T = 3500ms. The time constant of decay ðtÞ for each unit was

set to 10 ms. The unit activations also contain an offset cx and white noise rxðtÞ sampled at each time step from zero-mean normal

distributions with standard deviation lying in the range between 0.01 and 0.015. The matrix J represents recurrent connections in the

network. The network received multi-dimensional input u through synaptic weights B = ½bc; bs�. The input comprised of a prior-

dependent context cue ucðtÞ and an input usðtÞ that provided Ready and Set pulses. In usðtÞ Ready and Set were encoded as

20 ms pulses with a magnitude of 0.4 that were separated by time tm, where tm � Nðts; tswmÞ. wm represents the weber fraction

by which the noise process scales. The amplitude of the prior-dependent context input ucðtÞ was set to 0.3 for the Short prior

and 0.4 for the Long prior contexts. Networks produced a one-dimensional output zðtÞ through summation of units with weights

wo and a bias term cz.

zðtÞ = wT
o rðtÞ+ cz Equation 7

Network Training

Prior to training, model parameters ðqÞ, which comprised J, B,wo, cx, and cz were initialized. Initial values of matrix J were drawn from

a normal distribution with zero mean and variance 1/N, following previous work (Rajan and Abbott, 2006). Prior to training, synaptic

weights B and the initial state vector xð0Þ and unit biases cx were drawn from a uniform distribution with range [-1,1]. The output
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weights, wo and bias cz were initialized to zero. During training, model parameters were optimized by truncated Newton methods

(Martens and Sutskever, 2012) using backpropagation-through-time (Werbos, 1990) by minimizing a squared loss function between

the network output ziðtÞ and a target function fiðtÞ, as defined by:

HðqÞ= 1

jTtr I j
X
I

X
Ttr

ðziðtÞ � fiðtÞÞ2 Equation 8

Here i indexes different trials in a training set (I = different prior contexts x intervals ðtsÞ x repetitions ðreÞ). Ttr represents the epoch

within a trial that was used to compute HðqÞ and here corresponds to the production epoch. Accordingly, the target function fiðtÞ
was only defined in the production epoch. The value of fiðtÞwas zero during the Set pulse. After Set, the target function was governed

by two parameters that could be adjusted to make fiðtÞ nonlinear, scaling, non-scaling, or approximately-linear:

fiðtÞ=A
�
e
t=ats � 1

�
Equation 9

For the networks reported, fiðtÞwas an approximately-linear ramp function parametrized by A = 3 and a = 2.8. Solutions were robust

with respect to the parametric variations of the target function (e.g., nonlinear and non-scaling target functions). In trained networks,

tp was defined as the time between the Set pulse and when the output ramped to a fixed threshold ðzi = 1Þ.
During training, we employed three strategies to obtain robust solutions. In general, we injected three sources of variability: (1)

Noise added to individual units in the RNN, (2) noise added to input, and (3) noise imposed by jittering the time of events (scalar vari-

ability). The third regime generated the most Bayes-consistent results. In this scheme, the RNNs were trained such that interval-

dependent scalar noise was introduced into their observations (various trials tm � Nðts; tswmÞ ); however, the target was always

held to be the mean of those likelihood functions ðtsÞ. In other words, interval between the Ready and Set pulses varied across trials

with the scalar noise ðtmÞ while the network was trained to generate a ramping output during the production epoch that would reach

threshold at Set+ts. Within this family of networks, we systematically varied two parameters (repeated across multiple networks),

wm (weber fraction of the scalar noise) and the variance of white noise added to individual units to regularize the training procedure.

However, it was challenging to train networks under such scalar noise. Complete failure of training was common and only 40% of

networks were able to generate biased estimates that were consistent with Bayesian predictions. Importantly, all the networks

that succeeded in performing Bayesian integration established the curved manifold.

Network Causal Experiment

To evaluate the importance of the encoding axis on the behavior of the RNN at the time of Go, we performed a targeted perturbation

experiment involving changes of the network state along the encoding axis ðuÞ shortly before Set, which we refer to as ‘re-encoding’.

We systematically altered network states along the u 20 ms before the onset of Set and examined the consequences of this pertur-

bation on behavior. To verify our approach, we first performed a control experiment in which the perturbation was expected to have

no appreciable effect on behavior. Specifically, we re-encoded the network state for each trial of each ts to the expected state for that

ts under no perturbation (n = 3000 trials per re-encoding). In this control experiment, perturbation had no effect on behavior (as ex-

pected) whenwe used a protocol in which (i) we allowed the network to stabilize for 10ms after re-encoding (on the same order as the

time constant of individual units in the RNN), and (ii) administered the Set pulse 10 ms after stabilization (Figure 7D). Having estab-

lished a working protocol for the re-encoding experiment, we performed two causal experiments involving compression and

translation of network states on u.

For the compression experiments, we evaluated the network’s behavior after applying various levels of compression (40% and

80%) to network states toward the mean state (i.e., the state associated with the mean of the prior). For the translation experiments,

the same procedure was used except that the re-encoding involved a 20%shift in network states in the positive or negative directions

(i.e., resulting in increasing or decreasing ts) (Figure 7E). One constraint in the translation experiment was that the network could not

tolerate large negative shifts (i.e., intervals shorter than 400 ms for the short prior and 800 ms for the long prior). Such translations

placed the network state in regions of the state space in which the latent dynamics were no longer governed by the curved manifold.

DATA AND CODE AVAILABILITY

The published article includes all datasets generated or analyzed during this study. The code supporting the current study is available

from the corresponding author on request.
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